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Aim and Objectives

The goal of this research is to
understand how data and relationships are represented in the brains
and use this information to represent multiple data of any kind
in graph-based structures that behave like neural networks
to represent knowledge about the data, objects, and their relations

_to use it for solving different computational intelligence tasks
‘ efficiently without predefined targets before ,training”.
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How to use data
stored in various

Essential Differences =

databases efficiently in brain-like manner? ///,/

S

R
Brains contain sparse, irregular,
lateral, recurrent, adaptable,
and dynamically developed
connections during the life-long
training process, reproducing
diverse relationships between
represented objects by neurons,

while

contemporary NN structures are
usually rigid, regular, layered, and
feed-forward with predefined
inputs and outputs containing
regular all-to-all or many-to-many
area-limited connections that

can adapt only weights. /



https://home.agh.edu.pl/~horzyk/index-eng.php

ECML PKDD 2023
ECML

Insufficient DB
representation of
data relationships

Construction and Training of
Multi-Associative Graph Networks



https://2023.ecmlpkdd.org/
https://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

A %
RDB Relationship Representation §
Data stored in RDBs are usually imperfectly normalized and aggregated
to avoid too many join operations that impact search efficiency.

table: doctors link table: doctors-patients table: patients
id_doc|first_name|last_name|experience |specialization id_doc id_pat id_pat |first_name|last_name| age disease [room_id
D1 [(lohn & [Smith . 25 , |Surgery N D2 P4 P1 [lohn 4 Cage 35 |[Lupus & R4 4
D2 [Tom 4| |Allen .10, | [Radiology . D7 P4 P2 [lohn¥  [Smith 58 |Lupus ¥ R1|a
D3 |David Jolie /45 Surgery N D2 P6 P3 |Emma Hanks 42 4 |Colitis AR3
D4 |lohn | Y |[Smith s« 8 Oncology D7 P6 P4 _|Nina Ford , 470 | [Pneumonig| |R4%
D5 [Raul Willis . 2 || [Patotogy—-]_| D2 P7 //Pf Lucy Allen +70 | [Colitis 1IR3
D6 |Lucy Hanks /T 25]* [Radiology * W‘\\Jﬂ_ﬁ/ P6 |[Sara Ford ¥ 425 | |Pneumonia| |R4Y
D7 [Nina Ford 107  |Surgery & D6 _P7 | [ Prcate_ [Bosch 62 | |Glioma "R3
D8 ([Tom ¥ Cage / N 7l Surgery v D7 P7 P8 |David 'Smith 42 V|Infarct 4 R1 ¥
PS5 p7 P9 [Raul Willis 25 |[infarct ¥ R2
D5 P1
/ D5 P2
D1 P3 . :

/table: nursﬁq D3 P3 link table: nurses-rooms table: rooms
id_nur |first _j'name Iast_y‘la ele ience D8 Ps id_nur id_rom id_rom type beds
N1 [cate/ Bosch v| 25 ~ o N1 R3 R1_|PostOp 3
N2 |Emfma 8 - — N1 R4 R2 |Emergency| 2
N3 [Nifa “ |smith 10 o8 o8 N2 R3 R3 |Ward 4 4
N4 [Séra Ford 2 03 59 N2 R4 R4 |ward ¥ 5

D7 P9 oL =

Many relationships require the D2 P2 s R2
o N D2 P5

use of queries to find them. — — N4 R2

D6 P9

R\ RDBs represent only a small part of useful relationships, while/
b similarity, order, and the same values of attributes of objects ?
b @a\\\ stored in the same or different tables are unrepresented.,/,// d
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o~ ~ Associative Transformation Algorithm §

z
Let’s transform all Relational Database (RDB) tables to the graph
structure aggregating all the same values in the same nodes, connecting
all neighbor values in order, joining all tables’ columns of all RDBs
representing the same categories, following the presented algorithm:

‘-J
SQI :

[

[Transform the tables that do not cointain any foreign keys]

Are
all tables already Yes >

transformed?

No
Transform the tables that
{ S

cointain only foreign keys
o the already transformed table
|
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é Example of Associative Transformation %

/"’ \\ l ST
1 1]
table: nurses last_name

id_nur |first_name|last_name |experience
N1 |Cate Bosch 25
N2 |Emma Allen 8 [ASA am \
N3 |Nina Smith 10 graph L I
N4 |Sara Ford 2 ¥ &

g
0.000.00 0.000.00 0.000.00
[’
1.00 1.00 1.00 j

We start the database associative
transformation process from table
,hurses” because it contains

’ ‘ no foreign keys to any other tables.
(1, 3 ‘ 51 Each table row (entity) is represented by a node

I thatis connected to the nodes representing its
defining values (and other entities). /
" ) Simple attribute values are stored in , 6

43 &
: \\\ = the ASA-graphs for better performance. //// “

ASA
graph
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\§\ 11
ASA-graph §
ASA-graph is an associative self-sorting and self-balancing B-tree-based
graph structure for representing attribute values in the sorted order:

[ attribute: years_of_experience ]

» Aggregation and counting of duplicates I'OQt counter of aggregated duplicates
connection weight q connection weight

¥ ;
0.84740.75
key valueggg’ " element

* Similarity in connection weights

. , to the predecessor to the successor
* Almost linear access and balancing

B-t:ree branches

connection weights to
the defined object nodes

<

~
0.9810.86 Sorting ST R oo P nodev 0.9150.9380.95
; 7 |connections

(

1) ,(3 f '
0.86/10.95%0.9510.84 0.98/0.91

5 10 Igaf

1.00 0.33 1.00 X Le

object definition connections
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Py
é 7 Example of Associative Transformationx §

- ~—~ —— ~——
P ~
- ~ - ~~.
- ~ . ~
. ~
L ~ . ~
o - S
0 S

first_ name table: nurses last_name

id_nur |first_name|last_name |experience
N1 |Cate Bosch 25

——
0.0000.00 N2 _|Emma Allen 8 9.000.00
L N3 |Nina Smith 10 L I
‘ L2 N4 |Sara Ford 2 ¥ LI
0.00§0.000.00%0.00

0.000.00 0.000.00 0.000.00
1.00 1.00 1.00

o= 1

‘l _— 1 B 1__,
T @’@ Vir™0; (V)
>‘ /" All connections are weighted.
|

7/ The weights are calculated according to
3‘2 Fg the similarity of values represented by

= 7 the nodes or the number of represented
w values or objects: , =~ = _
0%5 & - (); " .().: m

.(-'n .(-_"n
1 (v — ™)

% L I Ch
¢ N w; " — : o o
A N R RO Gy
\ ~ T4\ Trar
¥ L \ ¢
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% Example of Associative Transformation %

Sparse graph
connections ‘-
work I.|ke hard @
attention. |

0.000.00
1.00

first_name

Q\\
In the next steps,
the other tables
are transformed
and their values
are aggregated

5 in the same

ASA-graphs

if belonging to
the same data
categories, e.g.:

Hfirst_name”,
»last_name”, or

‘2 experience”,

and counters and
weights are
updated.
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z Example of Associative Transformatio §

The nOdes first_name last_name .u;..c et Llnk table
Z 5
. - - , transformation
work Ilke 0.0070.00 0.0070.00
Nina Ford 7 7
n ron ' ' Cr—— specialization
eurons. -
03 P3
b8 bs
2 2 2 1 o B 2
0.0070.00 0.00710.00 0.00710.00 0.00710.00 0.00 0.00
Emma Sara Bosch Jolie P9 Radiology
0.50 0.50 0.50 00 L) 0.50
P9
2 2 4 2 2 2 3 2 2 5 2 1 1 4
0.00°0.0040.0080.00 0.0020.0040.0050.00 0.0070.00 0.00°0.00 0.0070.00 0.0020.00 0.0070.00 0.0070.00g0.00 50.00 0.00 0.0050.00 0.00 00 0.00
Cate| |David John| |Luc Raul Tom Allen Cage Hanks' Smith illis Oncology| |Patology Surgery
0.50 0.50 0 0.50 0.50 0.50 0 0.50 0.50 0.20 0.50 00 00 0
1 1 1 1 1 1 1 1
D1 D2 D3 v D4 D5 D6 D7 D8

Many-to-many

N1 N2 N3 N4 P1 P2 P3 P4 P5 P6 P7 P8 P9 i:'ﬁ“ : e'ati Ships are
- transformed to

: : : : — irect connections.

R1 R2 R3 R4

0.50 00 00 00 0.50 00 00 0.50 0.50 0.50 0.50 0 0.50 0 00
2 1 1 1 2 1 1 2 2 2 2 3 2 3 1
0.00 0.00 0.0010.6 0.67)40.6730.67 0.00 0.00/0.78%0.78 }0.84 ]} [K0.64 No.9 0.8280.00 0.00 540.00 0.00 #90.00 0.00 0.00 0.0050.8620.86 0.9 0.65 180 0 0
Ward 2 4 5 25 35 58 70 Colitis Infarct Pneumonia 2 8 25 45

' l o 0 ‘ : 1I 0 ' 1I 0 l2 0 . 0 5 /
%2 62 Gioma]  [Lupus 10 / %5
beds age disease experience //// d

{Rce


https://home.agh.edu.pl/~horzyk/index-eng.php

MAGN Constructed for RDB
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0.50 1.00

1.00 1.00
ﬂ.ﬁTﬂ.ET ﬂ‘E'lnAnﬂ .Dﬂﬂ.?B ﬂ.TBl‘l.ﬂd

age

J

¥ v
e

/1

0. 000.00
0.50
S

P

a E
0.0080.00)

ru-

0.

#

PSS
L~

L]

disease

\'_

0.50
2
0.00 0.00} 0.
Pneumonia

D

-

e

table: patients table: doctors link table: doctors-patients link table: nurses-rooms
id_pat |first_name|last_name| age disease |room_id id_doc |first_name |last_name |experience |specialization id_doc id_pat id_nur id_rom
P1  |John4 Cage 35 Lupus 4 4 D1 [lohn & Smith . 25 Surgery D2 P4 N1 R3
P2 John ¥ Smith 58 Lupus 1| 4 D2 |Tom Allen /410 Radiology D7 P4 N1 R4
P3 Emma Hanks 42 4 |Colitis 3 D3 [David Jolie //45 Surgery D2 P& N2 R3
P4 Nina Ford , 4+ 70 [Pneumonia‘ 4 D4 |John Smith / 8 Oncology D7 P6 N2 R4
PS5 |Lucy Allen | v 70 | [colitis \ 3 D5__|Raul| Willis /42 Patology D2 P7 N3 R1
P6 Sara Ford ¥ 4225 Pneumonia | | A¥+1 | D6 Lucy Hanks / 25| Radiology D4 P7 N3 R2
P7 Cate Bosch 62 ,_GJ-icrrrVa'/ 3 D7 |Nina / Ford 10" Surgery D6 P7 N4 R1
P8 |David Smith <[ |42 ¥ |Iinfarct 4 1 v D8 [Tom ¥ / [cage /[ / 2 Surgery D7 P7 N4 R2
P9 |Raul Wwillis ¥25 |infarct ¥ 2 o D5 P7
______ — . D5 P1
""""""""""" e ey SN -, D5 P2
] = -7~ D1 P3
table: rooms Y 7 table: nurses / / . B R@M@mﬁb"@
% f 5 d D3 P3
id_rom type beds v Vv id nﬁr-.ﬁrsl name |last nan)/e experien‘ce. v v
R1 |PostOp 3 - N1_|cate Bosch |/ 25% / D3 Fo
first_name last_name D7 PS5
R2 Emergency 2 I N2 [Emma Allen / 8 / D1 P8 - —~—
N - ¥ L3 I a
R3  |ward a . N3 |Nina Smith ‘/ 10 A b8 s p (OXC@&SS
R4 Ward = 5, N4 |Sara Ford 2 g
0.0080.00 . - - Wil o000 00! 1 D3 P9
I I e # RSty L l kY D7 )
LB, Lo 1 \ D2 P2 specialization
D2
D6
n.nnu.un ™. D6
1 S

.

24
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Efficiency of MAGNs S

Comparisons of SQL query times of MAGNs and RDBMs in milliseconds:

5///

3500

3000
2500
1000
500 I|
— N 7 _
1 2 3 4 5 6 7

experiment number the fastest

]
o
o
o

[
u
o
o

execution time [ms]

Hm PostgreSQL MariaDB | m MAGDS
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Experiment 1

select age from gxd_specimen limit 100;

Experiment 2

select distinct sp.specimenlabel

from gxd_specimen sp

inner join gxd_genotype ge

on sp._genotype_key = ge._genotype_key

inner join prb_strain st

on ge._strain_key = st._strain_key

inner join mgi_user us

on st._createdby key = us. user_key

where agemin in (select min(agemin) from gxd_specimen)
or agemin in (select max(agemin) from gxd_specimen)
and agemax in (select min(agemax) from gxd_specimen)
or agemax in (select max(agemax) from gxd_specimen)
and ge.isconditional = 0

and st.standard =1

and st.private=0

order by specimenlabel;

3500

3000

1000
500 I I
. - a [ .
1 2 3 a 5 6 7

experiment number

N
%
Q
Q

"
u
o
o

execution time [ms]

m PostgreSQL MariaDB = MAGDS

Queries Used in the Comparisons

[N

Experiment 3

select sum(sp.sequencenum) / count(sp.sequencenum)
from gxd_specimen sp

inner join gxd_genotype ge

on sp._genotype_key = ge._genotype_key

inner join prb_strain st

on ge._strain_key = st._strain_key

inner join mgi_user us

on st._createdby key = us. user_key

where agemin in (select min(agemin) from gxd_specimen)
or agemin in (select max(agemin) from gxd_specimen)
and agemax in (select min(agemax) from gxd_specimen)
or agemax in (select max(agemax) from gxd_specimen)
and ge.isconditional = 0

and st.standard =1

and st.private = 0;

Experiment 4

select count(distinct insertsize) from prb_probe;
Experiment 5

select max(insertsize) from prb_probe;

Experiment 6

select

sum(distinct startcoordinate) / count(distinct startcoordinate)

from map_coord_feature;
Experiment 7
select count(*) from map_coord_feature;

yy)
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2 Example of another RDB §

This DB contains multiple and missing values (DB is denormalized).

table: patient l D atabas e table: person
id | person_id |[room_id ICD-11 id first_name|last_name|age
1 9 1 ['CAO1', 'BAOO'] e 1| 4 Nina Musk |35
2 10 1 ['BD11', "2F7A'] 2 John Smith 58
3 11 3 ['EA80'] sQ 3 Evelyn Musk 42
4 13 2 ['EAS0’, 'BAOO'] 4| | John Bush |70
5 12 4 ['BD11', '"EA80"] ~—_ 4_-_/ 5 Evelyn (4 Ford 70
6 15 4 ['2F7A’, 'BAOO', 'SA10'] 6 Evelyn Woods | 25
7 16 2 ['SA10'] table: room 7| | sara Bosch |62
8 14 4 ['BAOOQ', 'EA80Q', 'SA11’ id type no_beds 8 Cate Smith 35
9 Lucy Allen 70
table: doctor 1| PostOp 3 10| | cate Bosch | 62
id | person_id | patient_id | specialization years._of_ o e B 11 Sara X Ford 25
experience 3| Warda 4 12| | David Smith | 42
1 2 1 4 Surgery 254 4| wardV 5 13| | John Bosch |35
2 1 2 Radiology A 10 14 David Musk 58
3 4 4 A Surgery 45 table: nurse 15 Sara Hanks 42
4 3 5 Oncology 17 id| person_id | room._id years._of_ 16 x Nina Y Ford 70
5 18 3 Patology 2 |« experience | (17| V¥ Nina Smith | 42
6 20 l Y Surgery 22 B 7 4 Ly 10 18 Lucy Bush 25
7 17 7 Radiology 25Vetl2l s5>~—""3 |[» 1 19| David Allen |35
8 19 8 Surgery Yio 4| (3 > 25 20| Raul Hanks | 42
9 21 3 v Surgery 1 4 |a 6 2 [ * 2 21| Raul Woods | 24

MAGNSs can manage all these cases without any problems.

]
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2 Example of another RDB §

This DB contains multiple and missing values (DB is denormalized).

table: patient D atabas e table: person
id | person_id |[room_id ICD-11 id first_name|last_name|age
1 9 1 ['CAO1', 'BAOO'] e 1| 4 Nina Musk |35
2 10 1 ['BD11', "2F7A'] 2 John Smith 58
3 11 3 ['EA80'] sQ 3 Evelyn Musk 42
4 13 2 ['EAS0’, 'BAOO'] 4| | John Bush |70
5 12 4 ['BD11', '"EA80"] ~—_ 4_-_/ 5 Evelyn (4 Ford 70
6 15 4 ['2F7A’, 'BAOO', 'SA10'] 6 Evelyn Woods | 25
7 16 2 ['SA10'] table: room 7| | sara Bosch |62
8 14 4 ['BAOO', 'EA8B0', 'SA11'] id type no_beds 8 Cate Smith 35
9 Lucy Allen 70
table: doctor 1| PostOp 3 10| | cate Bosch | 62
id | person_id | patient_id | specialization years._of_ o e B 11 Sara X Ford 25
experience 3| Warda 4 12| | David Smith | 42
1 2 1 4 Surgery 254 4| wardV 5 13| | John Bosch |35
2 1 2 Radiology A 10 14 David Musk 58
3 4 4 A Surgery 45 table: nurse 15 Sara Hanks 42
4 3 5 Oncology 17 id| person_id | room._id years._of_ 16 x Nina Y Ford 70
5 18 3 Patology 2 |« experience | (17| V¥ Nina Smith | 42
6 20 l Y Surgery 22 B 7 4 Ly 10 18 Lucy Bush 25
7 17 7 Radiology 25Vetl2l s5>~—""3 |[» 1 19| David Allen |35
8 19 8 Surgery Yio 4| (3 > 25 20| Raul Hanks | 42
9 21 3 v Surgery 1 4 |a 6 2 [ * 2 21| Raul Woods | 24

MAGNSs can manage all these cases without any problems.

]
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Construction Step 1

Transformed ?

tables:

Rooms ﬂ

/
Associative transformation # \
of table ,rooms” = 4 ﬂ

mroom_3m
.0

20
\

m [}
m room_2 @ room_4
.0 0.0

aggregation
IR\ of duplicates

PostOp

1

2 |[Emergency|{
3 Ward ;
4 Ward ¥
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Construction Step 2

Transformed
tables: %
Rooms %

2

Persons

.-. table: person
. . id |first_name |last_name|age
{ 1| 4 Nina Musk | 35

'- 2 John Smith | 58

3 Evelyn Musk 42
4 John Bush 70
5 Evelyn |, Ford 70
6 | | Evelyn Woods |25
7 Sara Bosch
8 Cate Smith
9 Lucy Allen
10 Cate Bosch
11 Sara 1 Ford
12| | David Smith
13 John Bosch
14| | David Musk
15 Sara Hanks
16| I Nina |¥ Ford
17| ¥ Nina Smith
18 Lucy Bush
19| David Allen
20 Raul Hanks
21 Raul Woods

1sel

auel
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Z Construction Step 3 R
Transformed &
tables: % £ i
Rooms |
oo -.-.-- AN ¢ |

Personsd &

\1' _,-g;g-!
I ¥ e
Patients IOy g
W

- #
¥
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Z

Transformed

=~ RN

Persons

2

Patients

/=
¢ |=u
Nurses _

2

Doctors

24
A

Construction Step S5
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MAGN Constructed and Weights Calculated
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MAGN Classification and Regression

MAGNSs can be successfully used for classification and regression tasks
defined by tables of training examples or databases, where we do not
need to specify which attribute contains labels (classes, predicted
values) before constructing MAGNs. We can do it at any time later!

ASA
graph
of class
labels

The MAGN constructed for IRIS training data.
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Constructed MAGN Exploitation

MAGNSs can be exploited in many different ways. We can freely choose input
and output (target) attributes, stimulate any combination of input nodes,
propagate stimulation through this network according to the calculated
weights in the BFS order, and read out the mostly stimulated output nodes.

, We can

AN 7 ; stimulate any

=1 Swa® Tee. e, fullorpartial

All neurons calculate “* & combination
weighted sums of input of input
stimuli in BFS order. nodes.

strongest
stimulated
class
neuron
(node)

® »
The results are represented by the strongest
stimulated nodes (neurons) or their combination.

It points the strongest associated nodes to the input context.
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Sparse MAGN Connections

/
Sparse MAGN connections represent essential relationships between values
and objects represented by this graph structure. The weights of these

connections reproduce the importance of these relationships.
Sparse connections resemble hard attention, while weights soft attention.

, We can

AN 7 ; stimulate any

k=1 Tee. =, fullorpartial

All neurons calculate “* & combination
weighted sums of input of input

stimuli in BFS order. nodes.

strongest
stimulated
class
neuron
(node)
represent
the
answer.

Y »
The results are represented by the strongest
stimulated nodes (neurons) or their combination.

It points the strongest associated nodes to the input context.
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MAGN Classification & Regression

Z

Classification results are pointed by the strongest stimulated label nodes.

Regression results are calculated based on the strongest stimulated
numerical nodes of the attributes pointed as outputs (targets).

We can change targets without retraining the network and solve diverse tasks.

, We can
AN 7 ; stimulate any
k=1 Swa®™ Tee. =, fullorpartial
All neurons calculate “* & combination
weighted sums of input of input

stimuli in BFS order. nodes.

strongest
stimulated
class
neuron
(node)
represent
the
answer.

Y »
The results are represented by the strongest
stimulated nodes (neurons) or their combination.

It points the strongest associated nodes to the input context.
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It allows us to
add attention
to data and
relationships,
strengthening
or weakening
impact of the
nodes of this
structure to
achieve still
better results of
regression and
classification.

______________________

.......................

For each training epoch /

For each training example/

Y

Activate all the sensors representing features except the target feature

v

target neurons and the neuron representing the reference value.
For categorical data the distance is 0 or 1.

Calculate and normalize delta: the differences between all the activated

For each neuron in the unique path with no inactive neurons from the
neurons representing the target variable to all of the activated sensors

yes ﬁ no

......................................................

Update the neuron priority:
P=P*(1+ alpha * activation)

Update the neuron priority:

] [P =P*(1-alpha * delta * activation)]

®
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Experiments & Comparisons O

%

Comparisons of the results collected for regression 18 training datasets:

vAGN s
RandomForestRegressor _
KNNRegressor [ 705
EvoTreeRegressor |G
LinearRegressor s
DecisionTreeRegressor _
NeuralNetworkRegressor _
LaBMRegressor
0.0 0.2 0.4 0.6 0.8
NRMSE
MAGN 109181,298

RANDOM-FORREST-SKLEARN
XGBOOST-REGRESSOR-XGBOOST

123449,784
125554,379

RANDOM-FORREST-BETAML 133102,785 RMSE
KNN-REGRESSOR-SKLEARN 137119,797
ADA-BOOST-REGREESSOR-SKLEARN 149062.353 | |
SVM-REGRESSOR-SKLEARN | ‘

216442,642

0 50000 100000 150000 200000 250000 ///
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Experiments & Comparisons &

MAGN
DECISION-TREE-CLASSIFIER 1 ERE
RANDOM-FOREST-CLASSIFIER

LOGISTIC-CLASSIFIER

KNN-CLASSIFIER
LGBM-CLASSIFIER

LOGISTIC-CLASSIFIER XGBOOST-CLASSIFIER 4,94E+08

KNN-CLASSIFIER EVO-TREE-CLASSIFIER 2,60E+09
N . —-—

EVO-TREE-CLASSIFIER NEURAL-NETWORK-CLASSIFIER 2,62E+09

Execution Time f 1 Allocated Memory

NEURAL-NETWORK-CLASSIFIER
RANDOM-FOREST-CLASSIFIER 84,97%
MAGN 84,02%
XGBOOST-CLASSIFIER 83,82%
LOGISTIC-CLASSIFIER 82,57%
KNN-CLASSIFIER 81,95%
EVO-TREE-CLASSIFIER 80,87%

DECISION-TREE-CLASSIFIER 80,9%
I I
LGBM-CLASSIFIER 80,18%

MAGN
NEURAL-NETWORK-CLASSIFIER
RANDOM-FOREST-CLASSIFIER
LGBM-CLASSIFIER
DECISION-TREE-CLASSIFIER
XGBOOST-CLASSIFIER

85,31%

V
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R
and source code R

E The MAGN source code is available at
https://github.com/danbulnet/witchnet

The source code can be downloaded and compiled on
multiple platforms. There are no specific minimal
hardware requirements; however, since this is an in-
memory model, the amount of RAM should scale with
the amount of data being modeled. The code was

E tested on popular 64-bit operating systems, such as

3 Windows 11, MacOS 13, and Linux Endevaour OS 2023.

o
]
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é | Commercial Deployment ; §

MAGNSs are under commercial deployment in cooperation with:

z:r IE':I: grqpe up® I
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Conclusions and Final Remarks

v" MAGNs are fully scalable and explainable models that can be used for
classification or regression of vectorized data stored in databases.

N _ / ONGS e _—‘ ; ?“ ‘;' ",5‘
B o PN C o Sl

v They can be very quickly constructed and fast evaluate and answer.
v Training data can be updated at any time without model ,retraining”.

v They can be constructed without specifying ,labels” that can be chosen
later, i.e., every attribute can be chosen as target without ,retraining".

v They can be used as associative knowledge graphs to store information
about associated objects of one or many databases parsimoniously.

v They can be used for searching for various data and relationships
in any given context. The results are legible and easy interpretable.

v They can cluster, classify, predict, recommend, group, recognize, find
associations... of any vectorized data stored in RDBs used in MAGNSs. 39
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Problem Definition

Aim and Objectives

How to operate on
database objects
and their relations

1. Create a model that can represent and
associate objects to recall and use them

in brain-like ways
using associations
for classification and
knowledge repre

for or
2. Develop a sparse network structure
capable of n:prcmnllng mlamd objects.
3. Use this network a twork
to trigger associated ub]u ,cl.mm ete

e s according to their importance

ation process:

Methodology Results
Associate data and objects ofaltables of all Ds by: MAGNSs The results collected for classification and regression
by the same nodes, prove ¥ of MAGNs:
ing dat
@ 4 relted objects i he graph. X oy
PEp— Additionally, we priori k = —
s b (adapt the soft attention) e — —
ASA-graph the values of some nodes ; ——
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Vean Acewracy
-y - 1=

The associative transformation process transforms values, objects, and
km (relationships) of database tables into specific

aph Network using Such results were p
Wallows to associae data and objects ofal ables of many databases {0 reproduce specific relationships of every dataset or database.
creating a knowledge model about the data collected and using it 8 pars i cated fon proces
for classification, regression, prediction, and other ML tasks. reproduce real relationships supporting predictions.
Next, new nodes representing conclusions can be added,

5
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Conclusions
1. Sparse associative connections work like hard attention »
allowing the MAGNS to focus only on essential relationships. ~~\,
2. The weights reproduce the strengths of these relationships,
defined by the frequency of occurrences of values and objects.
3. This strategy does not require a long-lasting training process.
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