ECML PKDD 2023

Construction and Training of Multi-Associative Graph Networks

Adrian Horzyk

Daniel Bulanda

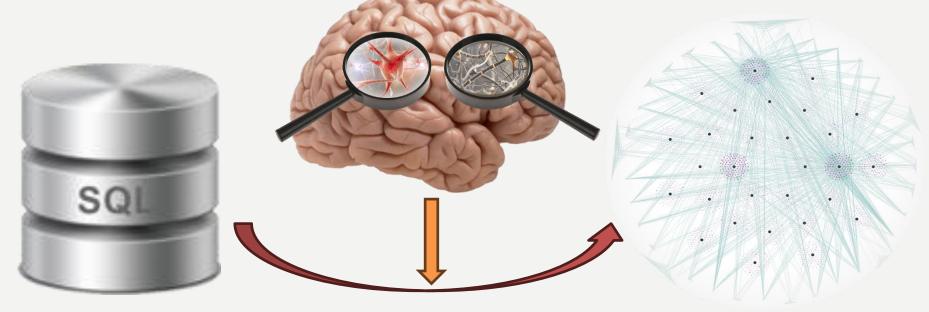
Janusz A. Starzyk

AGH University of Krakow - University of Information Technology and Management in Rzeszow - Ohio University in Athens

Aim and Objectives

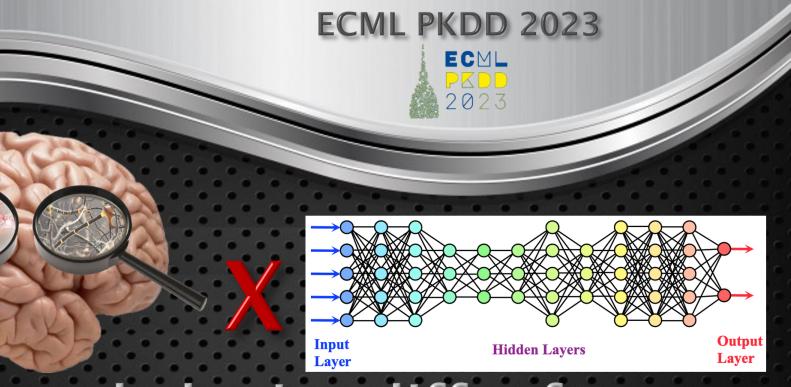
Construction and Training of Multi-Associative Graph Networks

SQ



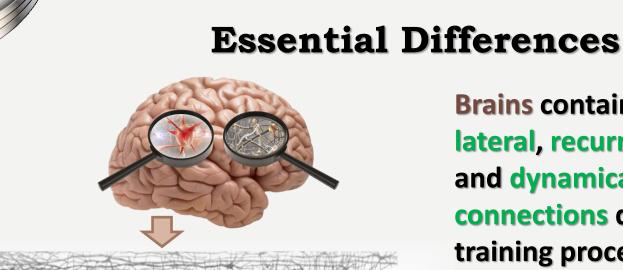
The goal of this research is to

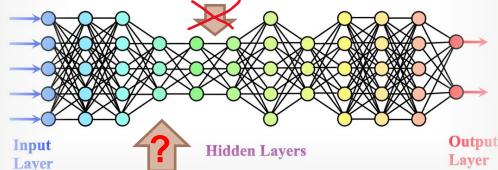
understand how data and relationships are represented in the brains and use this information to represent multiple data of any kind in graph-based structures that behave like neural networks to represent knowledge about the data, objects, and their relations to use it for solving different computational intelligence tasks efficiently without predefined targets before "training".



How do brains differ from contemporary neural networks?

Construction and Training of Multi-Associative Graph Networks





Brains contain sparse, irregular, lateral, recurrent, adaptable, and dynamically developed connections during the life-long training process, reproducing diverse relationships between represented objects by neurons, while

contemporary NN structures are usually rigid, regular, layered, and feed-forward with predefined inputs and outputs containing regular all-to-all or many-to-many area-limited connections that can adapt only weights.

How to use data stored in various

databases efficiently in brain-like manner?

Insufficient DB representation of data relationships

Construction and Training of Multi-Associative Graph Networks

RDB Relationship Representation

Data stored in RDBs are usually imperfectly normalized and aggregated to avoid too many join operations that impact search efficiency.

			table:	do	cto	or	S			
id_doc	first_n	name	last_name			кp	erie	nce	specialization	
D1	John	1	Smith				25		Surgery	•
D2	Tom 🛉		Allen				10		Radiology	
D3	David		Jolie				45		Surgery	
D4	John	+	Smith ,	•		\downarrow	8		Oncology	
D5	Raul		Willis				2		Patology	
D6	Lucy		Hanks			(25	+	Radiology	1
D7	Nina		Ford		(10		Surgery	+
D8	Tom		Cage				2		Surgery	+
				7						

	table	e: nurses				
id_nur	first_name	last_name	ex	erie	nce	
N1	Cate	Bosch	+	25		
N2	Emma	Allen		8		
N3	Nina 🖌	Smith		10		
N4	Sara	Ford		2		

Many relationships require the use of queries to find them.

	DS
	D5
	D5
\neg	D1
	D3
nce	D8
	D7
	D1
	D8
	D3
• • • • • •	D7
uire the	D2
thom	D2
them.	D6
	D6
only a sr	nall
r and th	

link table: do	ctors-patients	
id_doc	id_pat	
D2	P4	
D7	P4	
D2	P6	
D7	P6	
D2	P7	
D4	P7	
D6	P7	
D7	P7	
D5	P7	
D5	P1	
D5	P2	
D1	P3	
D3	P3	
D8	P5	
D7	P5	
D1	P8	
D8	P8	
D3	P9	
D7	P9	
D2	P2	
D2	P5	
D6	P8	
D6	P9	

		table: p a	atients		
id_pat	first_name	last_name	age	disease	room_id
P1	John 🖡	Cage	35	Lupus 🔺	R4
P2	John 🕇	Smith	58	Lupus 🔸	R1 🔺
P3	Emma	Hanks	42 🔺	Colitis	<mark>▲</mark> R3
P4	Nina	Ford 🔺	▲ 70	Pneumonia	R4
P5	Lucy	Allen	70	Colitis	R3
P6	Sara	Ford 🕈	▲25	Pneumonia	R4 [♥]
P7	Cate	Bosch	62	Glioma	R3
P8	David	Smith	42 🕇	Infarct 🔺	R1 🕈
P 9	Raul	Willis	25	Infarct 🔸	R2

link table: nurses-rooms									
id_nur	id_rom								
N1	R3								
N1	R4								
N2	R3								
N2	R4								
N3	R1								
N3	R2								
N4	R1								
N4	R2								

table: rooms										
id_rom	type	beds								
R1	PostOp	3								
R2	Emergency	2								
R3	Ward 🛉	4								
R4	Ward 🕈	5								

RDBs represent only a small part of useful relationships, while similarity, order, and the same values of attributes of objects stored in the same or different tables are unrepresented.

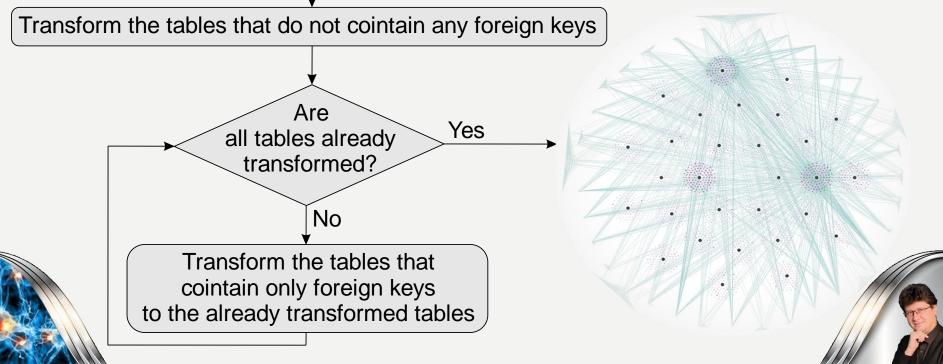
Associative DB Transformation to a Multi-Associative Graph Network

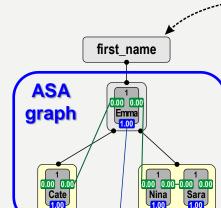
Construction and Training of Multi-Associative Graph Networks

SQ

Associative Transformation Algorithm

Let's transform all Relational Database (RDB) tables to the graph structure aggregating all the same values in the same nodes, connecting all neighbor values in order, joining all tables' columns of all RDBs representing the same categories, following the presented algorithm:

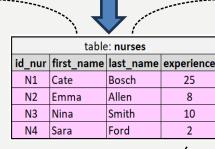


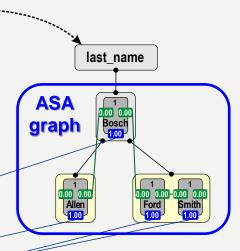


(1) N2

1 N1

EC





10

We start the database associative transformation process from table "nurses" because it contains no foreign keys to any other tables.

1 N3 1 N4

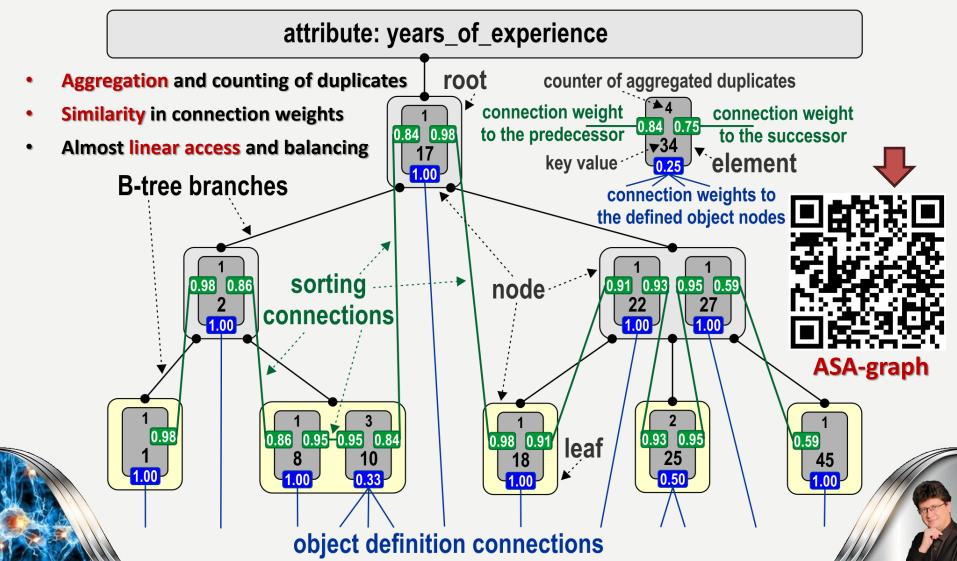
> Each table row (entity) is represented by a node that is connected to the nodes representing its defining values (and other entities). Simple attribute values are stored in the ASA-graphs for better performance.

ASA-graph

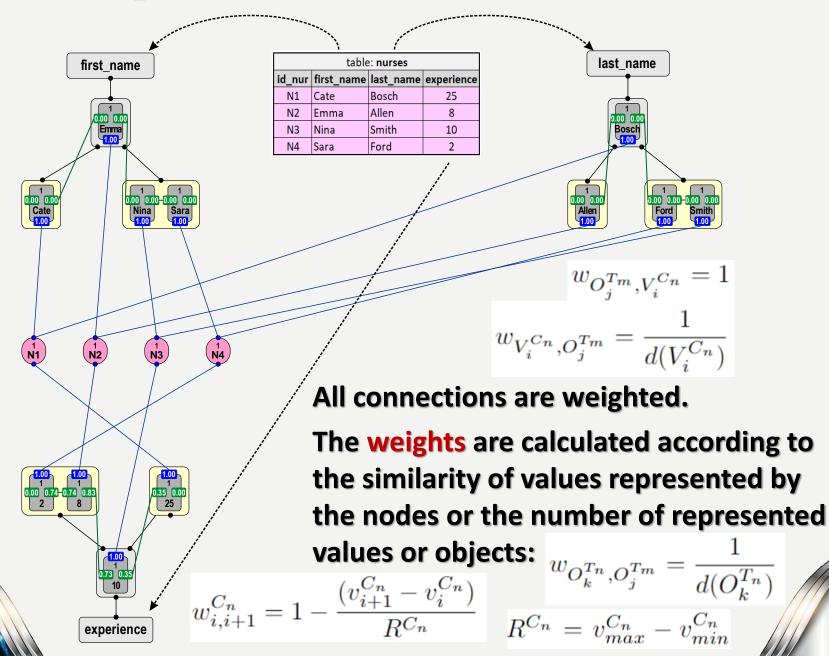
11

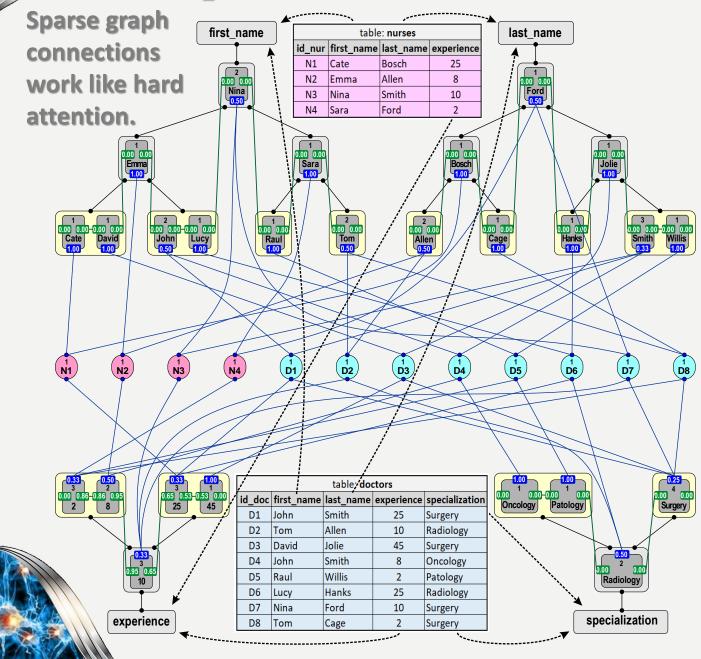
EC

ASA-graph is an associative self-sorting and self-balancing B-tree-based graph structure for representing attribute values in the sorted order:



ECM



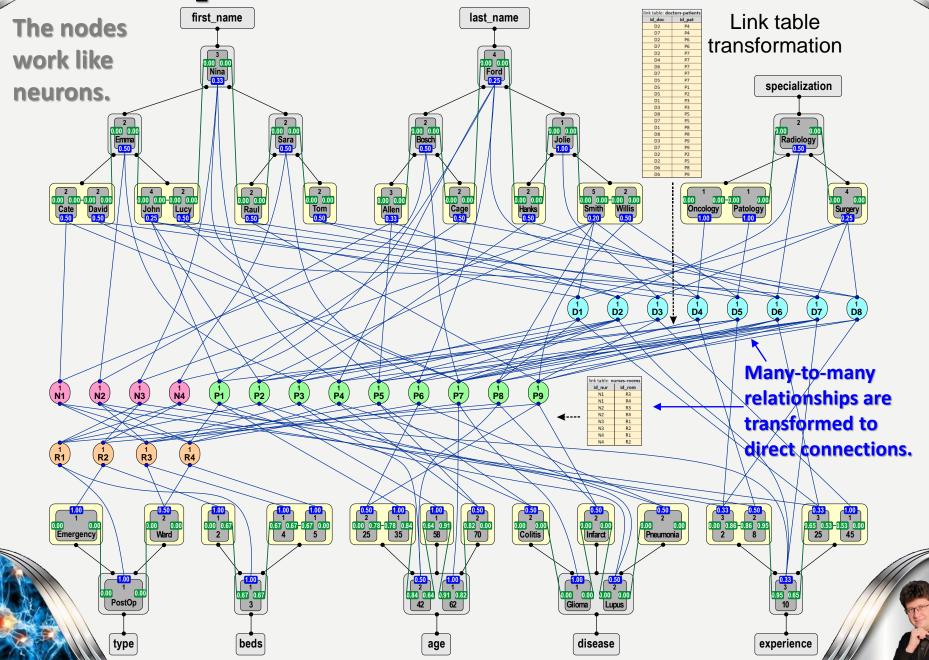


EC

In the next steps, the other tables are transformed and their values are aggregated in the same **ASA-graphs** if belonging to the same data categories, e.g.: "first_name", "last_name", or "experience", and counters and weights are updated.

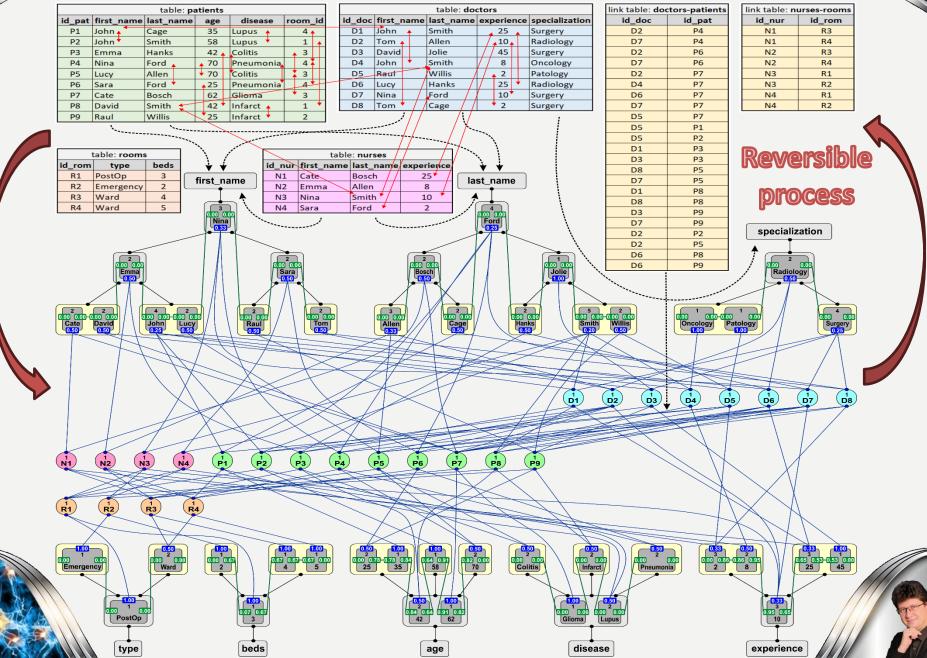
14

ECM



MAGN Constructed for RDB

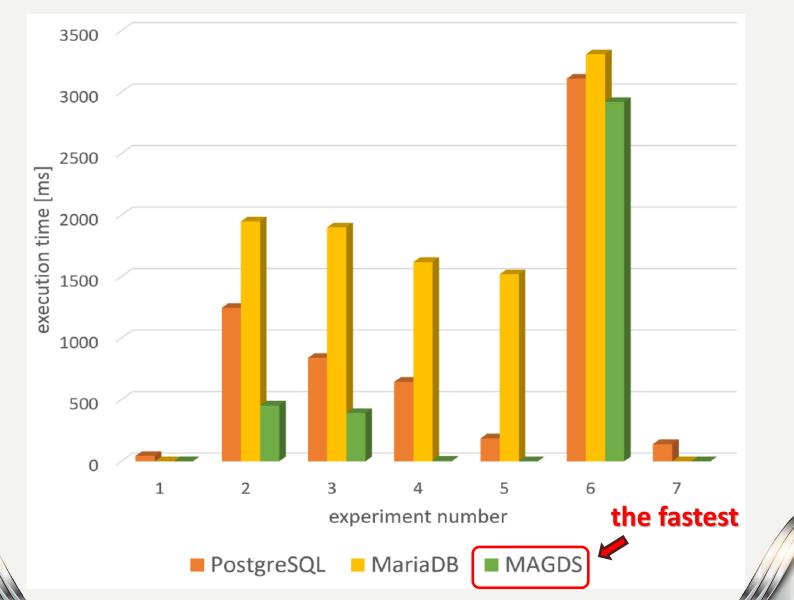
EC



Efficiency of MAGNs

EC

Comparisons of SQL query times of MAGNs and RDBMs in milliseconds:

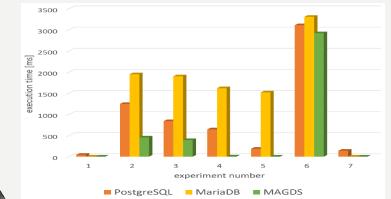


Queries Used in the Comparisons

Experiment 1 select age from gxd specimen limit 100; **Experiment 2** select distinct sp.specimenlabel from gxd specimen sp inner join gxd genotype ge on sp. genotype key = ge. genotype key inner join prb strain st on ge._strain_key = st._strain_key inner join mgi user us on st. createdby key = us. user key where agemin in (select min(agemin) from gxd specimen) or agemin in (select max(agemin) from gxd specimen) and agemax in (select min(agemax) from gxd_specimen) or agemax in (select max(agemax) from gxd specimen) and ge.isconditional = 0 and st.standard = 1and st.private = 0

order by specimenlabel;

EC



Experiment 3

select sum(sp.sequencenum) / count(sp.sequencenum) from gxd specimen sp inner join gxd genotype ge on sp._genotype_key = ge._genotype_key inner join prb strain st on ge. strain key = st. strain key inner join mgi user us on st. createdby key = us. user key where agemin in (select min(agemin) from gxd specimen) or agemin in (select max(agemin) from gxd specimen) and agemax in (select min(agemax) from gxd specimen) or agemax in (select max(agemax) from gxd specimen) and ge.isconditional = 0 and st.standard = 1 and st.private = 0; **Experiment 4** select count(distinct insertsize) from prb probe; **Experiment 5** select max(insertsize) from prb probe; **Experiment 6** select sum(distinct startcoordinate) / count(distinct startcoordinate) from map coord feature; Experiment 7 select count(*) from map coord feature;

Example of another RDB

This DB contains multiple and missing values (DB is denormalized).

			table: p	atient	\mathbf{V}]]			+-	ab					table:	person	
i	id	person_i	d room_id	ICD-1	1		D	d	L	al	0	IJ	E	id	first_name	last_name	age
	1	9	1	['CA01', 'E	3A00']					-				1	🔺 Nina	Musk	35
	2	10	1	['BD11', '2	2F7A']				12					2	John	Smith	58
	3	11	3	['EA80	D']					SQL				3	Evelyn	Musk	42
	4	13	2	['EA80', 'B	3A00']					UQL				4	John	Bush	70
	5	12	4	['BD11', 'E	EA80']									5	Evelyn	Ford	70
	6	15	4	['2F7A', 'BA00	<mark>)', 'SA10</mark> ']			_					1	6	Evelyn	Woods	25
	7	16	2	['SA10	D']				table: room				7	Sara	Bosch	62	
	8	14	4	['BA00', 'EA80)', 'SA11']			id	id t	уре	no_bed	hads		8	Cate	Smith	35
										ype		Deus		9	Lucy	Allen	70
			table: (aoctor				1	Po	ostOp	:	3		10	Cate	Bosch	62
id	per	son id p	patient id	specialization	years_o	_		2	Eme	ergency		3		11	Sara	Ford	25
					experier	nce		3	V	Vard 🔺		4		12	David	Smith	42
1		2	1	Surgery	25	•		4	V	Vard 🕇		5		13	John	Bosch	35
2		1	2	Radiology	▲ 10									14	David	Musk	58
3		4	4	Surgery	45				ta	ble: n	urse)		15	Sara	Hanks	42
4		3	5	Oncology	17		id	perso	on id	room	id	years	s_of_	16	👗 Nina	Ford	70
5		18	3	Patology	2	-	ľ	pers	//_/u	Toom	-"	exper	rience	17	🔻 Nina	Smith	42
6		20		Surgery	22		1		7	4		▶ 1	.0	18	Lucy	Bush	25
7		17	7	Radiology	25	′ ◀	2		\geq	3	3 1		1	19	David	Allen	35
8		19	8	Surgery	† 10	+	3		3	1		2	!5	20	Raul	Hanks	42
9		21	6	Surgery	1	4	4	(5	2		* :	2	21	Raul	Woods	24

5	18	3	Patology	2			• • • • • •		expe
6	20		Surgery	22		1	7	4	-
7	17	7	Radiology	25	♥ ◀ -	2	5	3	-
8	19	8	Surgery	† 10	-	3	8	1	•
9	21	6	Surgery	1	-	4	6	2	
								_	_

EC⊵

MAGNs can manage all these cases without any problems.

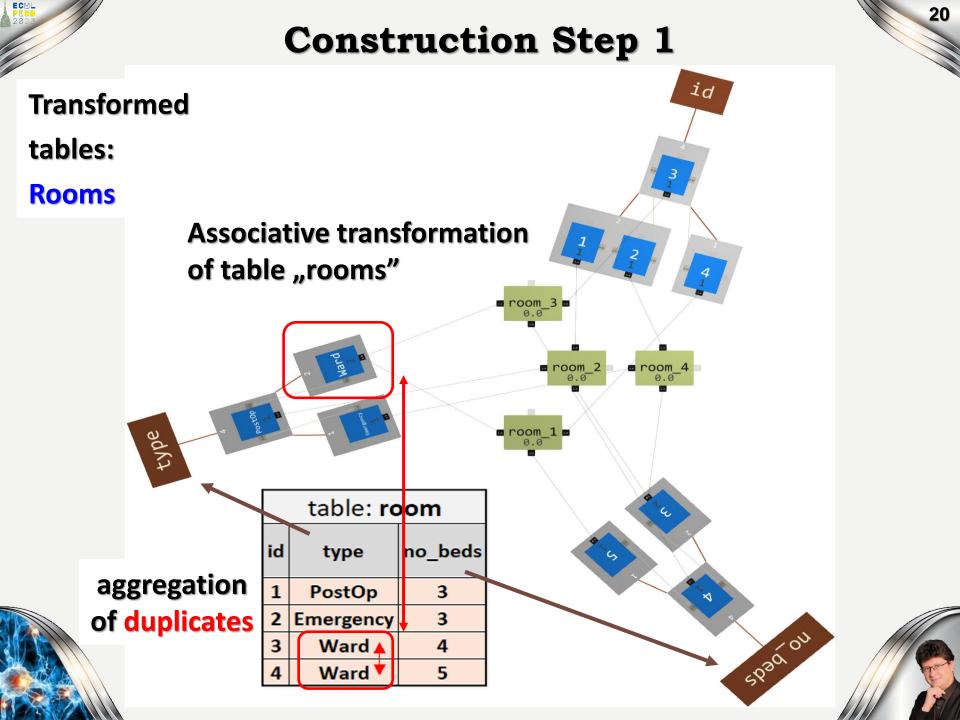
Example of another RDB

EC

This DB contains multiple and missing values (DB is denormalized).

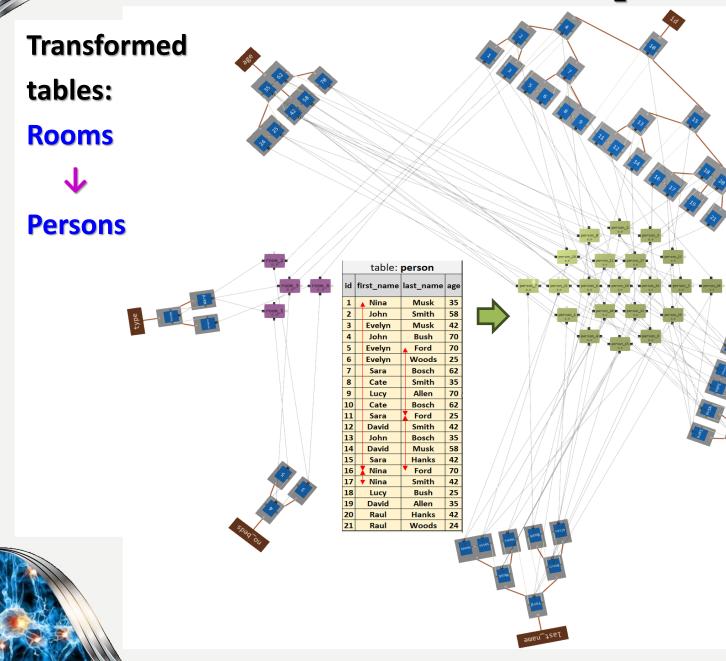
		table: patient						Database							table: person			
	id p	erson_i	d room_id	ICD-1	1				d	L	10	0	13	C	id	first_name	last_name	age
	1	9	1	['CA01', 'E	BA00']						-				1	🔺 Nina	Musk	35
	2	10	1	['BD11', '2	2F7A']					-					2	John	Smith	58
	3	11	3	['EA80)']						SQL				3	Evelyn	Musk	42
	4	13	2	['EA80', 'B	6 A00']						O GE				4	John	Bush	70
	5	12	4	['BD11', 'E	A80']											Evelyn	Ford	70
	6	15	4	['2F7A', 'BA00)', 'SA1(D']								1	6	Evelyn	Woods	25
	7	16	2	['SA10)']					table: ro			om		7	Sara	Bosch	62
	8	14	4	['BA00', 'EA80)', 'SA11	L']			id	+	/pe	no	beds		8	Cate	Smith	35
							٦			• •	/pe		beus		9	Lucy	Allen	70
			table:	doctor					1	Po	stOp	3	3		10	Cate	Bosch	62
id	pers	son id r	patient id	specialization	years_	_of_			2	Eme	rgency	3	3		11	Sara	Ford	25
		····_··			experi	ence			3	w	/ard 🔺	4	4		12	David	Smith	42
1		2	1	Surgery	25				4	W	/ard 🕇	ļ	5]	13	John	Bosch	35
2		1	2	Radiology	1 0)	Т							-	14	David	Musk	58
3		4	4	Surgery	45	6				tal	ole: n	urse)		15	Sara	Hanks	42
4		3	5	Oncology	17	'		id	perso	n id	room	id	year	s_of_	16	👗 Nina	Ford	70
5		18	3	Patology	2				perso	u	10011	-"	expe	rience	17	🕈 Nina	Smith	42
6		20		Surgery	22	2	1		7		4		▶ 1	L O	18	Lucy	Bush	25
7		17	7	Radiology		♥ ◀-		2	5	\geq	3		•	1	19	David	Allen	35
8		19	8	Surgery	10		1	3	8		1		2	25	20	Raul	Hanks	42
9		21	6	Surgery	1	-	H	4	6		2		* :	2	21	Raul	Woods	24

MAGNs can manage all these cases without any problems.



Construction Step 2

21

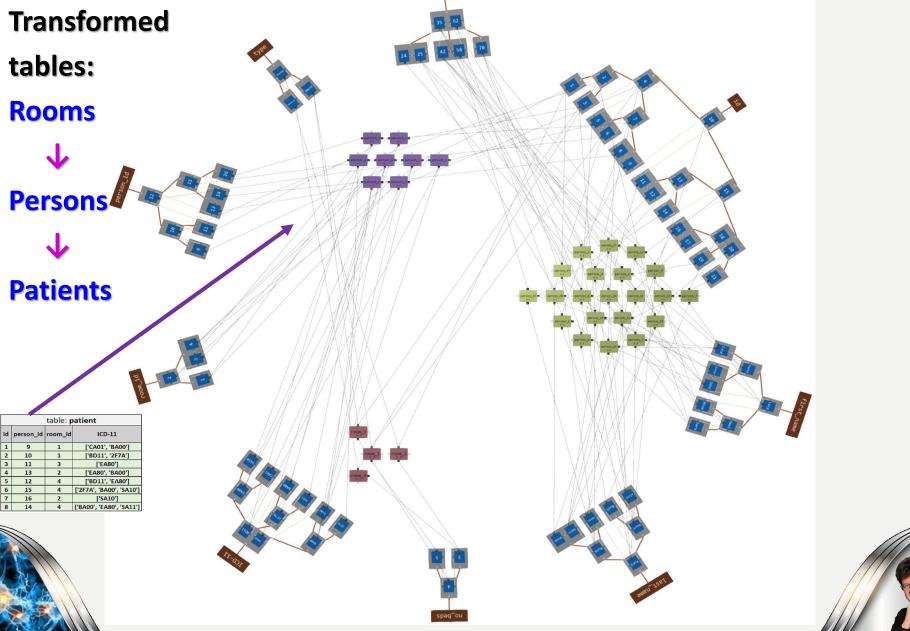


EC

Construction Step 3

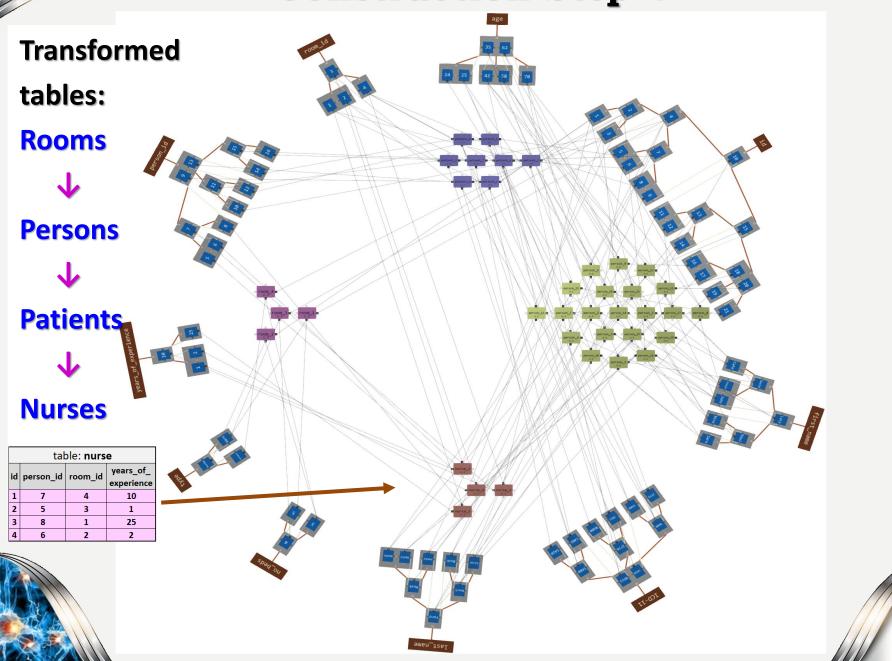
22

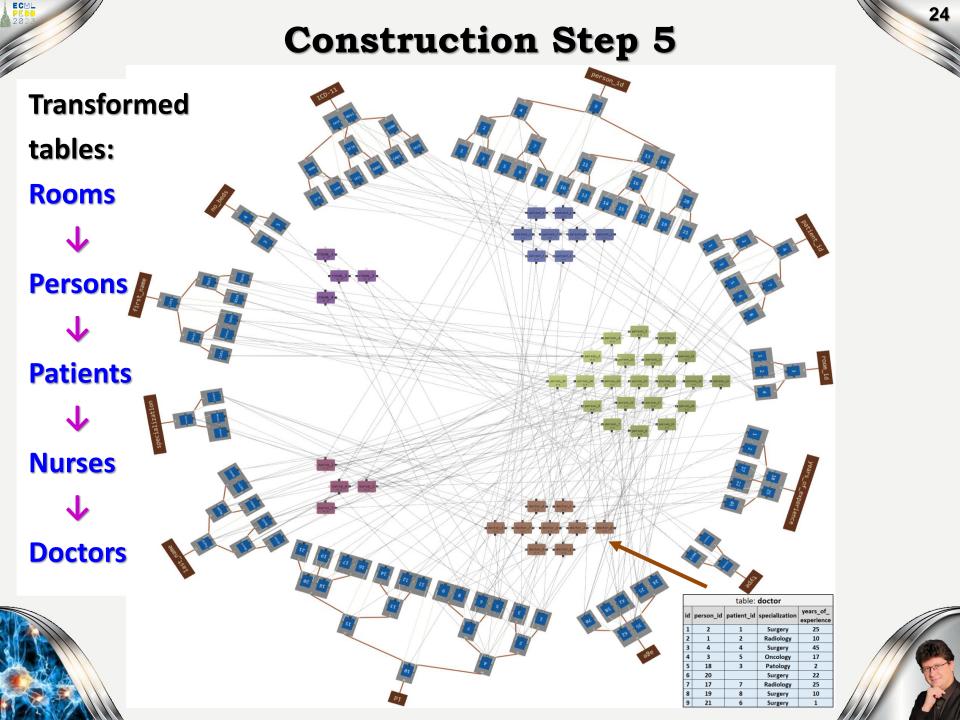
EC



Construction Step 4

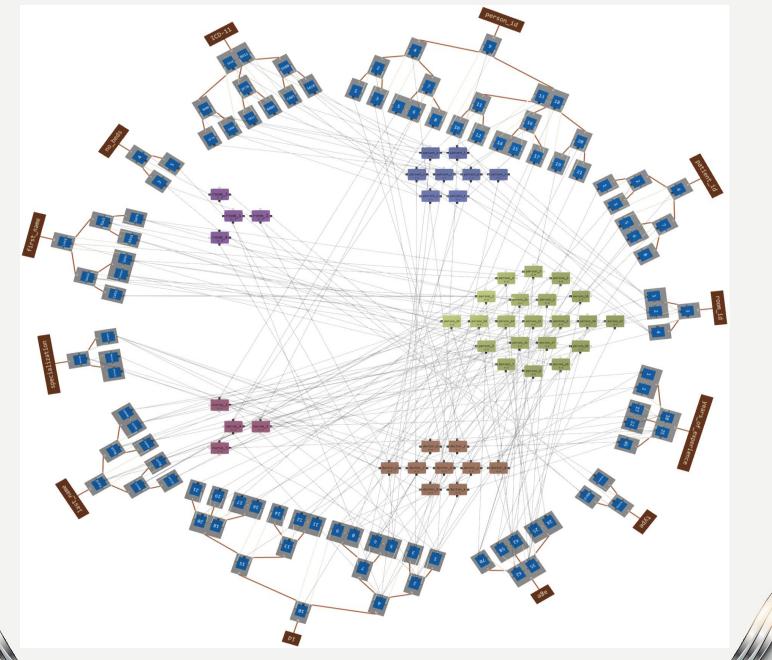
EC





MAGN Constructed and Weights Calculated

EC⊵



ECML PKDD 2023

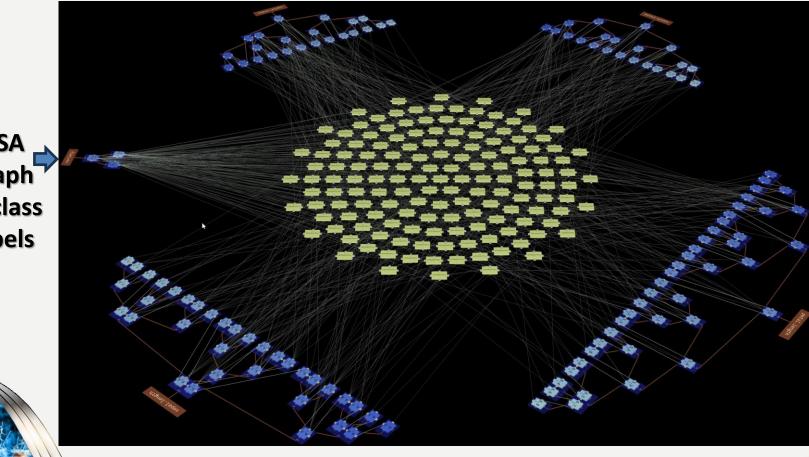
Multi-Associative Graph Networks for

Classification and Regression

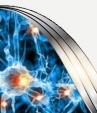
Construction and Training of Multi-Associative Graph Networks

MAGN Classification and Regression

MAGNs can be successfully used for classification and regression tasks defined by tables of training examples or databases, where we do not need to specify which attribute contains labels (classes, predicted values) before constructing MAGNs. We can do it at any time later!



ASA graph of class labels

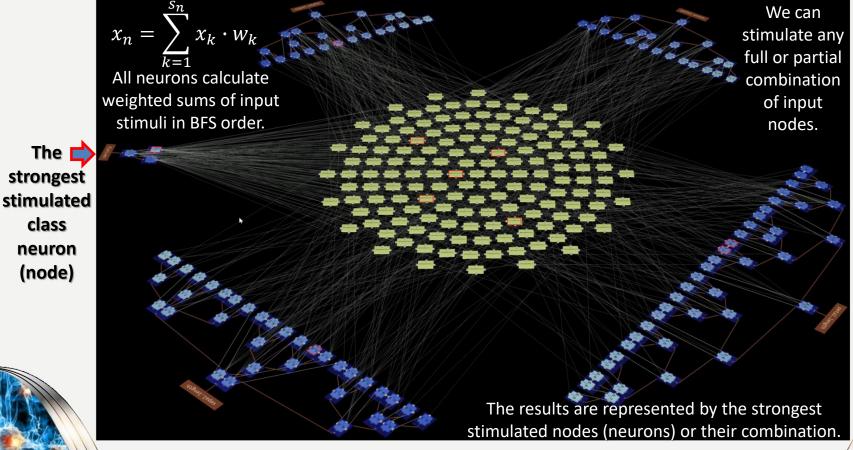


The MAGN constructed for IRIS training data.

Constructed MAGN Exploitation

28

MAGNs can be exploited in many different ways. We can freely choose input and output (target) attributes, stimulate any combination of input nodes, propagate stimulation through this network according to the calculated weights in the BFS order, and read out the mostly stimulated output nodes.



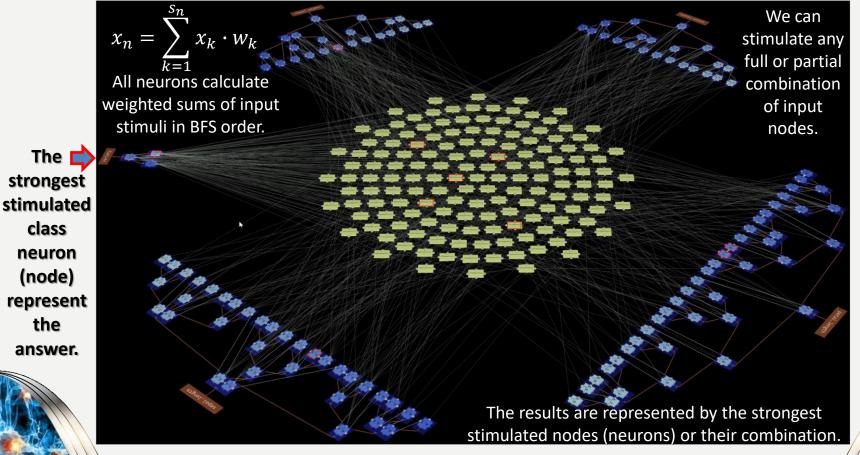
It points the strongest associated nodes to the input context.

Sparse MAGN Connections

29

Sparse MAGN connections represent essential relationships between values and objects represented by this graph structure. The weights of these connections reproduce the importance of these relationships.

Sparse connections resemble hard attention, while weights soft attention.



It points the strongest associated nodes to the input context.

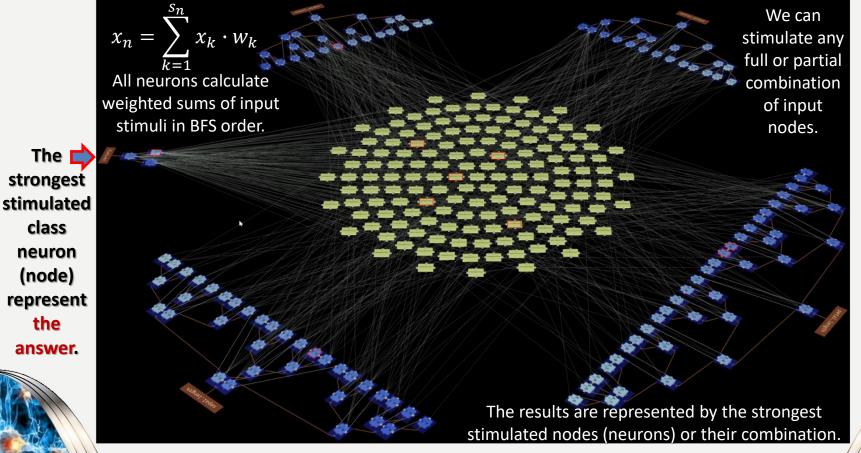
MAGN Classification & Regression

30

Classification results are pointed by the strongest stimulated label nodes.

Regression results are calculated based on the strongest stimulated numerical nodes of the attributes pointed as outputs (targets).

We can change targets without retraining the network and solve diverse tasks.



It points the strongest associated nodes to the input context.

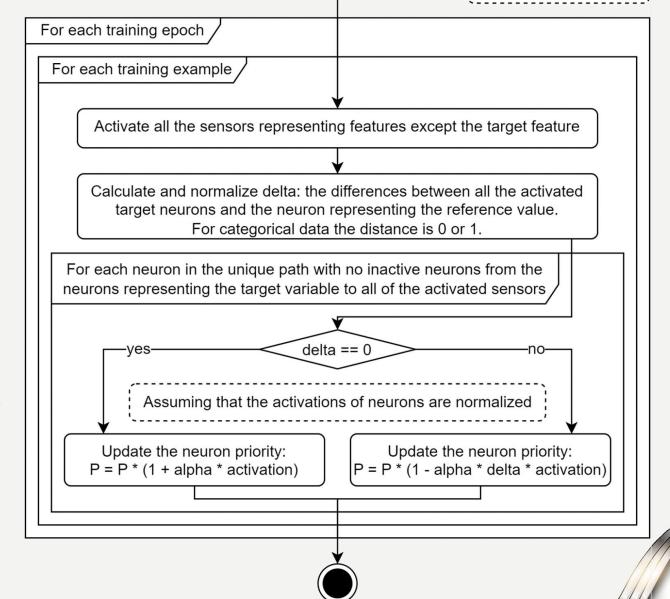
ECML PKDD 2023 ECML 2023

Prioritization Algorithm for data and relationship soft-attention

Construction and Training of Multi-Associative Graph Networks

MAGN Prioritization Algorithm

It allows us to add attention to data and relationships, strengthening or weakening impact of the nodes of this structure to achieve still better results of regression and classification.



aplha: learning rate

ECML PKDD 2023

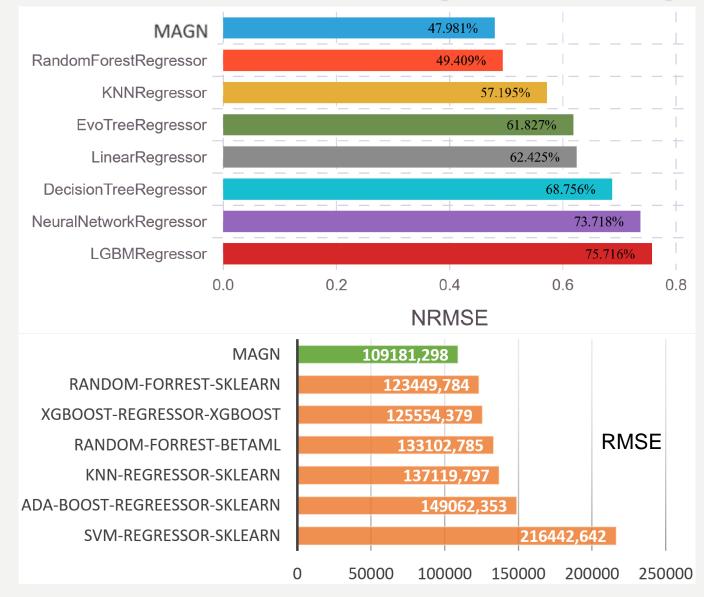
Multi-Associative Graph Networks

Experimental Results and Comparisons to SOTA Methods

Construction and Training of Multi-Associative Graph Networks

Experiments & Comparisons

Comparisons of the results collected for regression 18 training datasets:



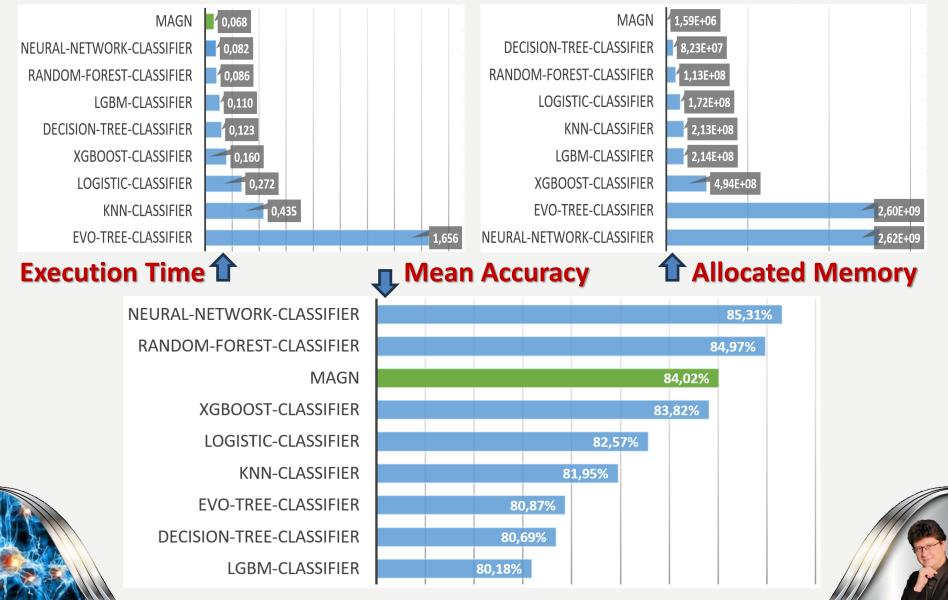
EC

Experiments & Comparisons

35

EC

Comparisons of the results collected for classification 73 training datasets:



ECML PKDD 2023 ECML 2023

Commercial Deployment & Conclusions

Construction and Training of Multi-Associative Graph Networks

MAGN implementation and source code

The MAGN source code is available at https://github.com/danbulnet/witchnet

The source code can be downloaded and compiled on multiple platforms. There are no specific minimal hardware requirements; however, since this is an inmemory model, the amount of RAM should scale with the amount of data being modeled. The code was tested on popular 64-bit operating systems, such as Windows 11, MacOS 13, and Linux Endevaour OS 2023.

Benchmark source code is available at

https://github.com/danbulnet/WitchnetBenchmarks.jl

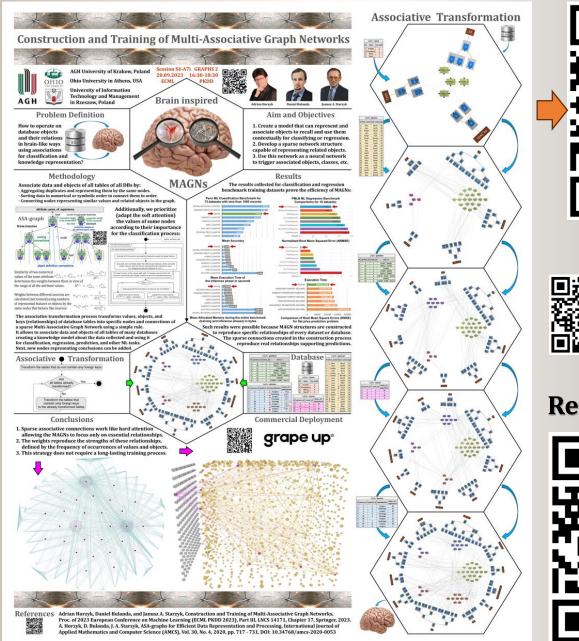
Commercial Deployment

MAGNs are under commercial deployment in cooperation with:

Conclusions and Final Remarks

- MAGNs are fully scalable and explainable models that can be used for classification or regression of vectorized data stored in databases.
- ✓ They can be very quickly constructed and fast evaluate and answer.
- ✓ Training data can be updated at any time without model "retraining".
- ✓ They can be constructed without specifying "labels" that can be chosen later, i.e., every attribute can be chosen as target without "retraining".
- They can be used as associative knowledge graphs to store information about associated objects of one or many databases parsimoniously.
- ✓ They can be used for searching for various data and relationships in any given context. The results are legible and easy interpretable.
- ✓ They can cluster, classify, predict, recommend, group, recognize, find associations... of any vectorized data stored in RDBs used in MAGNs.

Welcome to the poster for further discussions



Research papers:

Construction and Training of Multi-Associative Graph Networks

Adrian Horzyk

Daniel Bulanda

Janusz A. Starzyk

AGH University of Krakow - University of Information Technology and Management in Rzeszow - Ohio University in Athens

ECML PKDD 2023

Diblic marker and Accepted Marker

Bibliography and Associated Works

- ✓ A. Horzyk, J.A., Starzyk, J. Graham, Integration of semantic and episodic memories, IEEE transactions on neural networks and learning systems 28(12), 2017, 3084–3095.
- ✓ Basawaraj, J.A. Starzyk, A. Horzyk, Episodic memory in minicolumn associative knowledge graphs. IEEE transactions on neural networks and learning systems 30(11), 2019, 3505–3516.
- ✓ A. Horzyk, Associative graph data structures with an efficient access via AVB+trees. In: 2018 11th International Conference on Human System Interaction (HSI), IEEE, 2018, 169–175.
- ✓ A. Horzyk, Associative representation and processing of databases using DASNG and AVB+trees for efficient data access. In: Knowledge Discovery, Knowledge Engineering and Knowledge Management: 9th International Joint Conference, IC3K, 2017, Funchal, Madeira, Portugal, November 1-3, 2017, Revised Selected Papers 9, Springer, 2019, 242–267.
- ✓ A. Horzyk, D. Bulanda, J.A. Starzyk, ASA-graphs for efficient data representation and processing. International Journal of Applied Mathematics and Computer Science 30(4), 2020, 717–731.
- <u>https://grapeup.com/blog/associative-knowledge-graphs/</u>
- ✓ <u>https://github.com/PrzemyslawStok/Structural-Properties-of-Associative-Knowledge-Graphs</u> 42